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Abstract
Hierarchical Least Squares (HALS) and Multi-
plicative Updates (MU) are two key nonnega-
tive matrix factorization (NMF) solver algorithms.
(Gillis & Glineur, 2012) present an accelerated
method for these algorithms, sequentially updat-
ing each factor matrix before alternating to im-
prove runtime performance. We implement these
accelerated NMF algorithms for the task of audio
source separation. Specifically, we use percus-
sion audio and apply NMF to separate kick drum,
snare drum, and hi-hat audio into separate tracks.
We compare the runtime performance of A-HALS
and A-MU and find that A-HALS converges to a
better approximation of our source audio.

1. Introduction
Nonnegative Matrix Factorization (NMF) is a broadly ap-
plicable technique in signal processing. Given some in-
put matrix M ∈ Rm×n

+ , the objective is to find two com-
ponent matrices, denoted W ∈ Rm×r

+ and H ∈ Rr×n
+

such that M ≈ WH . Some integer r ∈ Z such that
r ≤ min{m,n} is chosen to represent the rank of the
factorization. We require M to be non-negative, meaning
Mi,j ≥ 0 ∀i < m, j < n. To find these approximate
factor matrices, the following optimization formulation is
commonly used:

min
W∈Rm×r

+ ,H∈Rr×n
+

||M −WH||2F s.t. W ≥ 0, H ≥ 0

Nonnegative matrix factorization has been applied to a range
of data science and scientific computation problems, includ-
ing image analysis, dimensionality reduction, hyperspec-
tral sensing, unsupervised clustering, topic modeling, and
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audio signal analysis (Fu et al., 2019) (Ozerov & Fevotte,
2010). There is an active interest in identifying fast, efficient
numerical NMF solvers. Typically, these algorithms can
be broadly classified as block coordinate descent methods,
where one factor matrix is frozen as the other is updated,
and this process alternates until some convergence criteria
is met.

Algorithm 1 A general form for nonnegative least squares

Initialize W (0), H(0) ∼ U(0, 1)
for k iterations do

Fix H(k)

Solve for W (k+1) such that:
||M −W (k+1)H(k)||2F < ||M −W (k)H(k)||2F

Fix W (k+1)

Solve for H(k+1) such that:
||M −W (k+1)H(k+1)||2F < ||M −W (k+1)H(k)||2F

end

Like many other least-squares problems, nonnegative ma-
trix factorization is solvable using alternating least-squares
(ALS), so long as nonnegativity constraints on M , W , and
H are met. To solve this least-squares formulation, it has
been observed that each update for W (k) and H(k) can be
computed iteratively (Cichocki et al., 2007). By fixing all
but one column of W , there exists a closed-form solution
to compute the optimal column W (:, p) independently of
the minimization of all other columns 1. This method of
sequentially updating each column of W (k) and H(k) is
denoted hierarchical least-squares (HALS).

Another general non-negative least squares solver computes
the update to each W (k) and H(k) using multiplicative up-
dates (MU) (Berry et al., 2007). The Euclidian distance
(and later, Frobenius norm) are shown to be monotoni-
cally nonincreasing given the multiplicative update rule

W (k) ◦ MH(k)T

W (k)H(k)H(k)T
. (Lee & Seung, 2000). Using

this property, and alternating the update of W (k) and H(k)

as done before, this multiplicative update algorithm will

1I am unsure if HALS applies only to nonnegative problems,
or can be used as a general least squares solver?
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converge to minima for W and H . However, it has been
shown that this convergence is relatively slow, and such
multiplicative update methods have largely been superseded
by HALS and projected gradient methods.

2. Accelerated Algorithms for NMF

Algorithm 2 MU update for W (k)

A = MH(k)T

B = H(k)H(k)T

C = W (k)B
W (k+1) = W (k) ◦ A

C

In their 2012 report, (Gillis & Glineur, 2012) present an
accelerated form for HALS and MU. Typically, an alternat-
ing least squares algorithm will alternate between W (k) and
H(k) after each update (W (k+1) and H(k+1), respectively).
However, at each iteration of this alternating method (which
they refer to as the ’outer iteration’), there is a fixed cost
of recomputing matrices A and B (see algorithm 2). These
matrices are invariant during each individual update, and
AH , BH (the A, B computed for the update of W (k)) only
need to be recomputed after an update is made to H . The
cost of recomputing A and B is the dominant computational
cost of each outer iteration, as shown in (Gillis & Glineur,
2012).

To minimize the computational cost of both MU and
HALS solvers, Gillis and Glineur propose an acceler-
ated nonnegative least squares solver, where updates to
W (k),W (k+1), ...,W (k+ℓ) occur sequentially before an up-
date to H(k+1) occurs. We denote these repeated in-
dependent updates as the function’s inner loop, where
W (k,1), ...,W (k,ℓ) represents the ℓth inner update of the
kth outer iteration. A and B must only be recomputed at
each outer iteration k, and are fixed for each inner iteration
(k, 1), ...(k, ℓ).

There is now the issue of identifying the optimal number
of inner iterations ℓ at each update of W (k) and H(k), such
that we minimize the number of outer iterations (and thus,
computations of A and B). Gillis and Glineur propose
two methods for estimating this optimal number of inner
updates. One, a ’fixed’ method, uses the estimated runtime
cost of each update to determine a stopping criteria for
this inner loop. 2 Alternatively, the interior loop can simply
iterate until the distance between the previous update and the
current one is within some threshold ϵ relative to the distance
of the first interior update, at which point the interior update
loop ends. This dynamic criteria is defined formally by
||W (k,ℓ+1) −W (k,ℓ)||F ≤ ϵ||W (k,1) −W (k,0)||F .

2Note that, rather than estimate this cost, we directly measure
the runtime of an update of A and B in our implementation.

Algorithm 3 Accelerated Coordinate Block Descent

Data: M ∈ Rm×n
+ , (W (0), H(0))

for k = 0, 1, 2, ... do
Start timer t
A = MH(k)T

B = H(k)H(k)T

t⇐ Elapsedtime
while runtime > αt do

Compute W (k,ℓ) using block update method
if ||W (k,ℓ+1)−W (k,ℓ)||F ≤ ϵ||W (k,1)−W (k,0)||F
then

break
end
ℓ++

end
W (k+1) = W (k,ℓ) Start timer t
A = W (k+1)TM
B = W (k+1)TW (k+1)

t⇐ Elapsedtime
while runtime > αt do

Compute H(k,ℓ) using block update method
if ||H(k,ℓ+1) −H(k,ℓ)||F ≤ ϵ||H(k,1) −H(k,0)||F
then

break
end
ℓ++

end
H(k+1) = H(k,ℓ)

end

Figure 1. Spectogram of percussion acoustic sample

(a) Factor matrix W (b) Factor matrix H

Figure 2. Low-rank decomposition of percussion musical sample
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3. A-HALS & A-MU for Source Separation
Nonnegative matrix factorization is broadly applicable to a
range of music signal processing tasks (López-Serrano et al.,
2019), such as acoustic feature extraction, voice detection,
and rhythm structure analysis. We focus on the application
of NMF to source separation. Given a mixed audio sample,
our goal is to extract each instrumental track as a separate
waveform. Commonly, access to the original multitrack
audio sample is only available to the music producer who
performed the original audio mixing. However, for music
production tasks such as remixing or audio restoration, these
multitrack audio files are necessary for editing work.

Our goal is to apply accelerated HALS and accelerated MU
to separate instrument tracks from a given audio sample. A
hypothetical user would typically be running source sepa-
ration from a digital audio workstation (DAW), and thus
would benefit greatly from a tool which is efficient enough
to be ran on a typical desktop computer unlike computation-
ally expensive neural methods (Hennequin et al., 2020). We
experiment with four separate percussion audio tracks, and
present spectrograms and waveform results for one of these
tracks in this report. Additional materials, including record-
ings of mixed audio and separated instrumental tracks, can
be found on our webpage here: https://aidanbeery.
com/portfolio/08nmf-music/.

We first convert our audio samples to spectrograms using
a short-time Fourier transform implemented in Librosa
3, an open-source audio processing framework. From this,
we take the elementwise absolute value of each element of
this spectrogram, yielding our amplitude spectrogram (see
Figure 1). By using the amplitude spectrogram, our input
meets the nonnegativity condition and we can use NMF
algorithms to find a low-rank representation of this acoustic
signal.

We follow the training paradigm outlined in algorithm 3,
using both fixed and dynamic stopping criteria for our inner
loops. The number of components of our factor matrices
(r) is determined manually by the observed number of in-
struments in the audio sample. This parameter depends on
the goal of the source separation. For example, if separat-
ing a multi-instrumental track, r would be the number of
instruments. However, if the goal is to separate a vocal track
from a mixed instrumental track (a common task in audio
post-production), then r would be set to 2.

Our sample track in Figure 1) is a percussion solo, and our
goal is to separate the kick drum, snare drum, and cymbals
in the audio track. In such a case, our goal is to extract
r = 3 components. We apply both Accelerated HALS and
Accelerated MU, using the parameters defined in (Gillis
& Glineur, 2012) (α = 0.5, ϵ = 0.1 for A-HALS, α =

3https://librosa.org/

Figure 3. Convergence of A-HALS and A-MU

Figure 4. Separated waveforms, after inverse STFT

2, ϵ = 0.1 for A-MU). For each algorithm, we run 300 outer
iterations.

For each component r, we take the outer product of the
corresponding row of H and column of W to yield a source
spectrogram (see Figure 5). We then apply an inverse short-
time Fourier transform to each component spectrogram,
yielding the source waveforms shown in Figure 4.

Comparing the runtime performance of A-MU and A-
HALS, our results are consistent with those found in (Gillis
& Glineur, 2012) and the broader NMF literature. We mea-
sure loss as ||M −WH||2F . We report time as CPU runtime
4 in place of number of iterations, as the number of inner it-
erations vary per sample depending on our stopping criteria.
HALS converges faster than our multiplicative update based
method, and appears to converge to a better approximation.

4. Conclusion
Nonnegative matrix factorization can be a robust, reliable
tool for audio signal processing. Unlike contemporary
deep learning approaches, NMF-based source separation
programs are computationally efficient, allowing for de-
ployment on resource-constrained devices and creating the
potential for accelerating creative workflows on mobile de-
vices.

4Using Python’s time.perf counter()

https://aidanbeery.com/portfolio/08nmf-music/
https://aidanbeery.com/portfolio/08nmf-music/
https://librosa.org/
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Gillis and Glineur’s method for accelerating coordinate
block descent algorithms for nonnegative least-squares prob-
lems is simple and straightforward to implement. In prac-
tical terms, this accelerated method can ’wrap’ an existing
alternating least-squares algorithm, simply requiring the
update functions be implemented with a maximum time
threshold and a early stopping criteria based on the distance
at each update. NMF solvers using multiplicative update
rules are simple to understand and implement, however they
suffer from worse overall convergence than the more com-
plex hierarchical least-squares algorithm. Both algorithms
are efficient approaches to nonnegative matrix factorization
5.

4.1. Future work

Source separation is an intrinsically noisy process, and yet
its primary applications, such as audio production, require
very low-noise outputs. Towards this, there has been am-
ple work on filtering source audio (Le Roux & Vincent,
2012). In these experiments, we briefly tested the use of
Wiener filtering as a post-processing step for our source
separation program. However, naively applying a Wiener
filter 6 with varying window sizes yields corrupted outputs.
Existing community open-source implementations 7 using
expectation-maximization yield valid waveforms, yet the
generated samples were far too quiet and seemed to have
some distortion. Future iterations of this program should
more thoroughly investigate denoising strategies for the
output source audio.
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