
Decision Transformers for Robotic Control

Aidan Beery Nathan Funckes Ali Martz
Oregon State University

{beerya, funckesn, martzal}@oregonstate.edu

Abstract

Traditional methods in reinforcement learning iteratively
update a policy function to optimize over non-continuous
reward spaces. Recent work has demonstrated the possibil-
ity of reformulating these reward-based sequential decision
problems as sequence learning problems. Simultaneously,
the recent dominance of transformer models for sequence
learning tasks has spurred research efforts to evaluate what
domains can benefit from the powerful long-distance rela-
tionship learning possible with this architecture. The Deci-
sion Transformer seeks to unify these two principles with a
generative trajectory modeling approach and a framework
for large, interdependent sequence inputs. In this work, we
extend the use of decision transformers to the robotics con-
trol domain. Specifically, we show the feasibility for deci-
sion transformer to learn the four tasks of the Fetch environ-
ment provided by gymnasium-robotics (slide, pick & place,
reach, push) in which a 7-degrees-of-freedom manipulator
is used to move a simulated object from one state to another.

1. Introduction
Traditional methods in reinforcement learning rely on

learning a policy by taking a series of iterative steps toward
the maximization of an often non-continuous reward func-
tion. Based on this principle of sequences of actions which
each create optimal rewards, recent work has formulated se-
quential decision-making problems often solved by these
reinforcement learning paradigms into a sequence learning
task, and applied a rich body of established sequence learn-
ing techniques to the domain [6] [7]. Simultaneously, trans-
former models have proven to be highly effective models
for learning semantically relevant representations of the in-
teractions between features in a space, particularly in a va-
riety of natural language processing tasks. A decision trans-
former seeks to unify these two principles by taking a gen-
erative trajectory modeling approach to deep reinforcement
learning problems, and applying a popular framework for
handling large, highly interdependent sequence inputs [3].

Prior work has demonstrated the efficacy of decision

Figure 1. An example of the Fetch robotic manipulator, rendered
in the MuJoCo physics simulator

transformers across a variety of benchmark RL tasks, in-
cluding Atari 2600 1 and D4RL 2. In this paper, we extend
the use of decision transformers to the robotics control do-
main, specifically targeting the Fetch environment provided
by gymnasium-robotics 3. The Fetch environment
proposes four tasks: Slide, Pick & Place, Reach, and Push.
Each one involves the use of a 7-DoF robotic manipulator
to successfully move an object from one state to another in
a simulated environment. An example of the slide task is
presented in Figure 1.

We demonstrate the feasibility of applying decision
transformers to robotic control tasks. We find that decision
transformers are able to learn somewhat successful policies
for 3 of the 4 Fetch tasks, even when trained on completely
random data. When learning from expert data, we find
that our model achieves a success rate greater than 70% for
Reach, Push, and Pick & Place. Overall, we show promise
in the use of sequence modeling techniques to learn behav-
ior policies in continuous-valued environments using offline

1https : / / research . google / resources / datasets /
dqn-replay/

2https://github.com/Farama-Foundation/D4RL
3https://robotics.farama.org/envs/fetch/

1

https://research.google/resources/datasets/dqn-replay/
https://research.google/resources/datasets/dqn-replay/
https://github.com/Farama-Foundation/D4RL
https://robotics.farama.org/envs/fetch/


data without the need for conventional reinforcement learn-
ing algorithms.

2. Related Work
A fundamental challenge of many reinforcement learn-

ing problems is representing the action and observation
spaces. Successful methods in deep reinforcement learn-
ing, such as Deep Q-Learning, are designed for discrete en-
vironments. However, robotics applications often involve
continuous-valued action spaces. Previous work attempt-
ing to apply Deep Q-Learning to continuous environments
discretize the action space which may lead to numerical in-
stability in neural function approximators [8].

In response to the challenges of learning policies for con-
tinuous control tasks, Lillicrap et. al. present an extension
to Deterministic Policy Gradients (DPG) using neural net-
works to learn a critic function Q(s, a) and an actor function
µ(s|θµ) [8]. Deep Deterministic Policy Gradients (DDPGs)
use neural function approximators to enable learning higher
dimension Q functions which permits an agent to learn opti-
mal actions in high dimensional or continuous spaces. Sim-
ilarly to Deep Q-Learning, DDPG implements a target func-
tion for both µ and Q. It also applies a replay buffer to apply
existing optimization techniques on function approximators
without producing numerical instability when training.

During training, some noise term N is added to the actor
policy µ which enables exploration in continuous environ-
ments. DDPG matches or exceeds the performance of reg-
ular DPG when evaluated against a series of control tasks.
It also can learn an effective policy in motion control-based
environments in significantly fewer steps than DPG.

DDPG is still limited by an environment’s reward space
despite its success in continuous action spaces with low and
high dimensional observation spaces. Many reinforcement
learning problems are best characterized by binary rewards
where a given trajectory only receives a positive reward sig-
nal in the case where it reaches the goal state. However, for
large state spaces, heuristic-driven exploration policies may
never encounter a trajectory where it receives any reward in-
formation. Thus, DDPG and other off-policy reinforcement
learning algorithms are unable to gain any understanding of
an environment’s dynamics.

Hindsight Experience Replay (HER) is a technique that
augments off-policy learning algorithms by modifying the
replay buffer such that, for a given trajectory s1, ..., sT , and
some goal g /∈ {s1, ..., sT }, it randomly sets g = sT for
this trajectory before inserting it into the replay buffer [1].
This goal-modification principle operates on the assumption
that the dynamics of the environment are invariant to the
goal state. Therefore, providing a positive reward signal for
some trajectories at some end-trajectory states sT can con-
dition our model on the properties of the transition function
governing the environment and learn what state-action pair

are associated with what end-trajectory states.
To evaluate the efficacy of HER in complex, continuous,

multi-task environments, Andrychowicz et. al. propose the
Fetch environment, a simulated 7-DoF robotic manipulator
with a two-fingered end effector [10]. The Fetch robotic
arm simulation is implemented in a MuJoCo physics sim-
ulator and consists of four tasks: Reach, Pick and Place,
Push, and Slide (see figure XYZ). The observation space is
defined by the velocities and torques at each joint in the ma-
nipulator as well as the global coordinates of the box, goal
state, and end effector. Fetch’s action space is defined by
the desired global coordinate of the end effector at the next
timestep and constrained by the physics simulator’s dynam-
ics. Fetch uses a binary, sparse reward where the return
is -1 in all states except the goal state, where it is 0. For
Slide, Pick and Place, and Push, this goal state is achieved
by moving a box from a randomly generated initial coordi-
nate to the goal location. Reach only needs the manipulator
to move the box to the goal state.

For Push, Slide, and Pick and Place, Andrychowicz et.
al. find that DDPG is unable to solve these tasks without
HER [1]. Using HER and a sparse binary reward space, an
agent can achieve a 100% success rate in any of these three
environments. RL practitioners often design reward func-
tions to guide an agent towards the desired goal without re-
quiring it to reach the goal state before receiving a reward
signal. A dense reward function for Fetch is presented as
r(s, a, g) = λ|g − sobject|P − |g − s′object|P and encourages
the agent to take actions which reduce the distance between
the box and the goal state. However, this shaped reward is
not sufficient to allow a DDPG agent to solve any of the
Fetch tasks. Furthermore, even when incorporating HER
into a DDPG agent with a dense continuous-valued reward,
in no case is a success rate of greater than 20% achieved.
By hand-crafting a shaped reward function, our learning al-
gorithm optimizes for a new objective function which may
or may not be sufficiently similar to our desired outcome.
Using HER avoids the need for reward engineering in this
environment by implicitly developing a curriculum to learn
the dynamics of the environment.

Despite its success in the Fetch environment, researchers
have identified that the technique can be numerically un-
stable and is highly sensitive to hyperparameters. Further-
more, in the case of stochastic environments, end-trajectory
states reached due to random noise may be assigned as goal
states and introduce bias to the learned policy. As an alter-
native to hindsight based methods, Ma et. al. propose an
offline RL algorithm that uses a goal-conditioned state oc-
cupancy matching objective function to learn a policy. Go-
FAR [9] attempts to learn a policy with a state-occupancy
distribution most similar to the distribution of states that
satisfy the goal condition as generated by some expert agent
which is able to ”teleport” to the goal state. By reducing this

2



to a weighted regression problem, GoFAR is able to guar-
antee optimal goal-weighting distribution. When evaluated
against Fetch, the authors find that GoFAR is able to achieve
significantly greater average returns than DDPG + HER de-
spite a sparse binary reward space. Furthermore, GoFAR
performs slightly worse with HER than without, indicating
that hindsight is not necessary for a state-occupancy match-
ing based learning algorithm.

Continued efforts have been made to handle high-
dimension continuous control problems in reinforcement
learning without relying on hindsight methods. By treating
Q function estimation as a representation learning problem
instead of strictly as a reward optimization problem, Eysen-
bach et. al. the abundance of existing work in represen-
tation learning models to design effective policy learning
agents [4]. Specifically, the authors investigate the use of
contrasting learning as a mechanism for directly estimating
a Q function to learn a goal-conditioned policy. When com-
pared against TD3 + HER on Fetch Reach and Slide tasks,
a contrastive-learning-based model matches or exceeds the
performance of hindsight-based models, even without re-
ward shaping.

Two trends in the broader machine learning research
community seemed to coincide - the reformulation of RL
as a modeling problem and by proxy the use of deep learn-
ing techniques for policy estimation, and the meterotic
rise of the transformer architecture for sequence repre-
sentation learning [7]. Trajectory Transformers were an
early attempt at fusing these two trends by reformulat-
ing reinforcement learning as a sequence learning prob-
lem [6]. Episodes are represented as trajectories consist-
ing of a state, action, and reward token at each timestep
τ = (s1,a1, r1, s2,a2, r2, ..., sT ,aT , rt). The goal is to
learn a sequence of actions that leads to the goal condition.
A decoder model architecture based on GPT is used for the
transformer and actions are decoded using a beam search
algorithm at inference time. Janner et. al. leverage ex-
isting datasets of offline reinforcement learning problems,
namely the D4RL control benchmark tasks, and find that
a GPT-style transformer is able to match or exceed current
state-of-the-art offline RL algorithms on these tasks.

One of the primary challenges facing reinforcement
learning for robotic control is the expense of gathering data.
Despite the robustness of the aforementioned representation
learning techniques, many still rely in part on expert inputs
to build a dataset of trajectories to learn from [2]. Simi-
larly to Janner et. al., the Decision Transformer (DT) uses
a GPT-style transformer to learn optimal action sequences.
Unlike the Trajectory Transformer, Decision Transformers
predict action sequences autoregressively. Both Trajectory
Transformer and Decision Transformer use action sequence
generation methods which pick actions based on future po-
tential reward, instead of reward at the next state. Instead

of directly learning reward embeddings in each trajectory,
it uses Return To Go (RTG) and associates early states with
the cumulative discounted reward of all future states in that
action sequence.

During training, a similar trajectory formulation as used
in the Trajectory Transformer is utilized, tokenizing states,
actions, and RTGs at each timestep. However, the autore-
gressive action generation of Decision Transformer only
predicts actions [a1, ..., aT instead of predicting the state
and RTG as well. In the Atari 2600 benchmark using an
image observation space, the Decision Transformer is able
to match or exceed the current state of the art - conservative
Q-learning - in 3 of the 4 games tested. In the D4RL control
benchmark suite, Decision Transformer outperforms con-
ventional reinforcement learning algorithms in most cases.
Crucially, Decision Transformer also demonstrates the abil-
ity to learn reward-optimizing behavior even when only pre-
sented with randomly generated trajectories, enabling vastly
superior scaling of trajectory datasets than what is currently
available in offline RL datasets.

3. Methods
We train a Decision Transformer to learn a policy for

four tasks from the Fetch environment - Reach, Pick &
Place, Slide, and Push. To achieve this, we use the offline
RL dataset for Fetch provided by Ma et. al. [9], consist-
ing of 40,000 trajectories generated from a random action
policy, as well as 4,000 from an expert policy.

Each trajectory represents a single episode in the envi-
ronment with 50 steps per episode. At each timestep, the
state is represented by the velocity and torque values at each
joint of the arm as well as an indicator as to if the end ef-
fector is opened or closed. The Fetch environment is goal-
aware, so the current location of the box and the coordinate
of the goal state are provided along with the observation for
Slide, Pick & Place, and Push. For Reach, the current global
coordinates of the end effector replace the box coordinates.
We append this goal information to the state vector for each
observation. In total, our observation space contains 31 di-
mensions for all tasks besides Reach, where the observation
vector is of length 16. The action space is represented as
the global 3-dimensional coordinates of the manipulator at
the next timestep.

Reward in the Fetch environment can be modeled as ei-
ther a sparse binary reward or a continuous-valued dense
reward. The sparse reward space assigns each action-state
pair with a reward of -1, unless it is within an Euclidian dis-
tance of ϵ = 0.05 of the goal coordinate, in which case the
reward is 0. The shaped reward function for Fetch proposed
in [1] measures the difference in distance between the box
location and the goal coordinate in the current timestep in
addition to the anticipated distance after the next action ac-
cording to tunable hyperparameters. We use a simplified

3



Figure 2. Training loss across instances of Decision Transformer.

version of this dense reward that takes the negative Euclid-
ian distance between the box location and the goal coordi-
nate at each timestep4. As recommended in [3], we calcu-
late returns-to-go and assign future earned reward to each
state-action pair.

We use the HuggingFace Decision Transformer imple-
mentation5 based on the architecture proposed in [3]. The
D4RL control environments benchmarked in the original
Decision Transformer paper consist of trajectories with
episode lengths of 1000, while our Fetch trajectories are
only of length 50. We aim to reduce overparameterization
and improve training stability via reducing the number of
transformer layers from 3 to 2. We also increase the number
of self-attention heads from 1 to 4, as Fetch’s observation
space is larger than that of the D4RL environments. Thus,
there may be additional relationships between features that
a single attention head cannot encode appropriately. Our
model’s loss is defined as the mean squared error of the pre-
dicted action from the target. We use an Adam optimizer
with a learning rate of 1× 10−4.

We compare three different dataset preparation schemas
for each of our tasks. Models are trained first on only ran-
dom trajectories, as described in [3]. The collection of ex-
pert trajectories requires considerably more effort than ran-
dom sampling of the action space, so the ability to learn an
environment’s dynamics from only random trajectories is
of great interest for high-dimensionality control problems,
like those frequently solved by conventional RL algorithms.
We also evaluate our models when trained on a dataset with
90% random data and 10% expert trajectories, comparable

4This is the dense reward function recommended in https://
robotics.farama.org/envs/fetch/slide/#rewards

5https://huggingface.co/docs/transformers/main/
model_doc/decision_transformer

to the dataset regimen used for GoFAR [9]. We then under-
sample our random subset to create a dataset of 36,000 ran-
dom trajectories and 4,000 expert trajectories. Finally, we
include models trained on exclusively expert data, assessing
the ability for Decision Transformers to emulate behavioral
cloning. Since behavioral cloning of expert policies in com-
plex environments is already achievable using feed-forward
neural networks, we anticipate that Decision Transformers
should handle this task with ease despite having access to
significantly fewer trajectories.

Each model is evaluated using the
gymnasium-robotics Fetch implementation 6. A
trained Decision Transformer predicts the next action at
each time step in the environment. Success is measured by
percentage of trials which are able to successfully reach the
goal state within a 0.05 margin of error. For each model,
we test 10 different training depths, from 10 epochs to 100,
executing 100 episodes per training depth and recording the
number of successful trials as well as the average return.

4. Results
To evaluate how well decision transformers have learned

the tasks in the Fetch environment, we report the loss of
our models during training, the average cumulative rewards
across 100 trials at different points during training, and the
success rate of our models as a percentage of successful tri-
als.

In Figure 2 we present a graph all our models’ losses dur-
ing training. We observe that each models’ loss is quickly
reduced after only a few epochs. After this initial rapid
falloff the loss of each model shows little to no further im-
provement. This failure to reduce loss after a few early

6https://robotics.farama.org/envs/fetch/

4

https://robotics.farama.org/envs/fetch/slide/##rewards
https://robotics.farama.org/envs/fetch/slide/##rewards
https://huggingface.co/docs/transformers/main/model_doc/decision_transformer
https://huggingface.co/docs/transformers/main/model_doc/decision_transformer
https://robotics.farama.org/envs/fetch/


(a) Fetch Reach (b) Fetch Push

(c) Fetch Pick and Place (d) Fetch Slide

Figure 3. Average Cumulative Rewards over 100 trials

epochs suggests that our loss may not be representative of
our target function, or that our model may not be adequately
learning from the target data.

We observe in Table 1 the average cumulative rewards
for each of our dataset subsets. Using the average reward of
the trajectories in our dataset, we compare the rewards from
model-generated trajectories to assess our model’s perfor-
mance on Fetch tasks relative to the policies used to gener-
ate the dataset.

Following this idea we evaluate our models at every ten
training epochs and calculate the average cumulative reward
across 100 trials as seen in Figure 3. We find that for three
of the four tasks, the models trained on the expert data have
a greater cumulative reward than each of the other models
for their respective tasks. This behavior likely follows from
the higher average reward found in the expert training data
as observed in Table 1. However, for most of the models,
including the expert models, the average cumulative reward
of the models seem to be consistently less than or equal to
that of the data it was trained on.

In Table 2 we present the success rate of our models on
each of the environments. We include the success rate for
both a max length of 50 timesteps and 100 timesteps. These

Task Random 90-10 Expert
Reach -9.51 -8.76 -2.03
Push -8.59 -8.09 -3.86

Pick and Place -11.76 -11.35 -7.91
Slide -22.69 -21.88 -20.37

Table 1. Average Cumulative Reward for each Data Distribution

values were calculated by running each model for 100 trials
on the selected task. For the models trained on the expert
data, we observe good performance on 3 of the 4 tasks with
a success rate of 100% on reach, 82% on pick and place
and 55% on push. The model trained for the slide task, on
the other hand, had a success rate of only 4%. Addition-
ally, the models trained on all random data and the ninety-
ten split data all had low success rates when limited to 50
timesteps. However, when the number of steps is doubled,
there is a noticeable increase in the success rate of the mod-
els on reach, push, and pick and place tasks. The model
trained for pick and place on the ninety-ten split increased
its success rate from 6% to 50% and the model trained on
expert went from an already high success rate of 82% to a

5



Task
Random

(50 steps)
90/10

(50 steps)
Expert

(50 steps)
Random

(100 steps)
90/10

(100 steps)
Expert

(100 steps)
Reach 9% 9% 100% 100% 100% 100%
Push 14% 13% 55% 13% 24% 73%

Pick and Place 7% 6% 82% 7% 50% 96%
Slide 0% 1% 4% 2% 3% 4%

Table 2. Success rate over 100 trials, best epoch

success rate of 96%. The most significant of these increases
is seen for the reach task where the models trained on ran-
dom data and the ninety-ten split both increased their suc-
cess rate from 9% to 100%. The results in Table 2 clearly
show that a decision transformer trained on random data in
the Fetch environment is able to only successfully complete
three out of four of the tasks in some cases. Furthermore, a
policy for the Reach task is learned which achieves a 100%
success rate when given enough time.

5. Discussion

We demonstrate the feasibility of extending the Deci-
sion Transformer model to the Fetch continuous control
tasks. Without the use of hindsight, a replay buffer, or
target networks, transformer networks are able to learn
decision-making policies in complex continuous-valued en-
vironments. However, our results clearly indicate that our
model struggles to converge to an optimal policy in many
cases.

As found in [1, 10], Reach appears to be the easiest of
the Fetch tasks for a learning algorithm to solve. Despite
this, our Decision Transformer only achieves a 9% suc-
cess rate when using random trajectories and limiting to 50
epochs. When trained exclusively on expert data, however,
our model achieves 100% success on Reach. Furthermore,
when the maximum episode length is extended to 100 steps,
models across data strategies achieve 100%.

Similarly, consistent with findings in prior work, we find
Slide to be the most challenging task because our model
fails to learn an effective behavior policy. Even when ex-
tending the maximum episode length to 100 steps and using
exclusively expert trajectories, our model only achieves a
4% success rate in the best case. This large of a performance
difference between Slide and other tasks, even on expert
data, demonstrates the difficulty of learning from actions
with long-distance effects on reward. Since the manipulator
is not in contact with the box as the box approaches the goal
state, the learning agent must learn what early action-state
pair are associated with a goal state despite a reward that
is decoupled from these earlier states and only sends a posi-
tive signal after the manipulator can no longer effect change
on the outcome of the episode. However, transformers are
known for their ability to model long-distance relationships

between tokens in a sequence, and as such we would antic-
ipate that our model is in fact best suited for a task such as
Slide. Therefore, we believe our model’s failure on this task
to be an engineering failure, rather than a limitation of the
modeling approach.

Except for in the case of Slide, we find that models
trained on exclusively expert trajectories outperform their
random counterparts across all tasks and episode lengths.
This indicates that the Decision Transformer is in fact ca-
pable of behavior cloning. We also see in Figure 2 that
models trained on expert data tend to achieve smaller mean
squared errors with respect to action vectors than their
random-model counterparts, seeming to indicate that Deci-
sion Transformers can more easily learn to emulate the state
distribution of the action spaces of expert datasets. How-
ever, especially in the case of Push, we find that these mod-
els do not achieve 100% accuracy, and do not outperform
other behavioral cloning algorithms. Given the computa-
tional complexity of transformer models, it would be ill ad-
vised to use such a model for behavioral cloning. However,
an all-expert model provides a point of comparison to mea-
sure the performance impact of learning from random data.

When comparing the cumulative returns of our models
in Figure 3 to those of our dataset in Table 1, we find that
our models tend to perform similarly to the reward distri-
bution of their training dataset. In the case of Reach and
Pick & Place, the model trained on expert trajectories out-
performs all other models considerably. Table 1 also indi-
cates a similar trend with expert data having a considerably
smaller mean cumulative return relative to other subsets.
Our models seem to match the reward distribution of the
source trajectories. However, these models are not learning
some aspect of the environment or task sufficiently to actu-
ally exceed the average returns found in the source data.

5.1. Limitations & Future Work

With an maximum episode length of 50 steps, our ran-
dom and 90-10 split models fail to learn consistently effec-
tive behavior policies. Given the robust properties of the
Decision Transformer model presented in [3], we find this
behavior to be unusual. However, when the episode length
is extended to 100 steps, our random models achieve con-
siderably more successful trials. We find that our Decision
Transformer is learning the dynamics of the Fetch environ-

6



ment, and is learning to accomplish goals in said environ-
ment, even from random data. However, the learned policy
is inefficient, and takes a long time to approach the goal
state, despite the training data only consisting of 50 steps
per episode.

We suspect the cause of this suboptimal learning behav-
ior is twofold. First, we hypothesize that our loss function
does not capture enough information about the environment
and long-term rewards to effectively inform the optimizer
about what decisions are and are not relevant to the model
for learning our task. Naively measuring mean squared er-
ror between action vectors is appropriate for environments
where an explicit goal state is not known, such as the D4RL
benchmark tasks. However, since we are able to perceive
achieved goal and desired goal with each observation, alter-
native loss functions should be explored. Contrastive learn-
ing can be used to align embeddings generated from trans-
former models [5]. Applying a contrastive objective func-
tion to our decision transformer could allow for the align-
ment of successful trajectories from the dataset. Another
possible reformulation of the Decision Transformer loss
function would be to incorporate state occupancy matching
- measuring the KL divergence between the distribution of
possible states and the distribution of goal-satisfying states
in a given time step. However, this function would likely be
significantly more expensive to compute than mean squared
error over an elementwise difference of vectors, introducing
additional issues of scalability.

Furthermore, we believe our choice of reward function
for our model was inadequate for the task. As discussed
in [1], shaped or dense rewards in environments where the
desired behavior is typically represented with a binary re-
ward risks introducing bias into the policy learned by the
agent. In the case of negative Euclidian distance from box
to goal coordinate, our model pursues actions which bring
the box closer to the goal, but lacks the ability to quickly
solve a task in the environment instead needing significantly
longer episode lengths to demonstrate model performance.
In the future, we would investigate alternative dense reward
functions which also provide a slight incentive to approach
the object with the gripper, allowing the model to better
learn optimal actions during earlier steps in the episode.
We believe that a reward function which would encourage
these steps earlier in the episode would lead to a model
which would be more likely to reach the goal state within
50 epochs.

Future experiments with Decision Transformers in the
Fetch environment should investigate the use of sparse re-
ward functions. The aforementioned modifications to the
dense reward function may encourage optimal actions early
on, however the hand-crafted reward function risks intro-
ducing bias into the learning algorithm. By using a sparse
reward space, we allow the learning agent to optimize for

the desired outcome as defined by the goal state, instead of
optimizing for a function which we believe to be an appro-
priate heuristic of the goal. Training Decision Transformers
on a sparse reward environment would enable more direct
comparison to existing models as well, such as DDPG +
HER [1], GoFAR [9], and Contrastive Learning [4].

We evaluate the Decision Transformer as a single-task
model, in which we take a dataset of pre-computed trajec-
tories for a given task and train the model exclusively on
data for the task for which we evaluate it against. However,
much of the robustness of transformer models has been de-
rived from their ability to fine-tune on downstream tasks af-
ter being pretrained on large amounts of unstructured data.
Future experiments should begin to assess the feasibility of
transferring this pre-training and fine-tuning paradigm to re-
inforcement learning domains. Furthermore, it is yet to be
seen if a Decision Transformer can function as a multi-task
learner, transferring knowledge about the dynamics of the
environment learned from one task’s trajectories to previ-
ously unseen tasks in that environment.

6. Conclusion
We extend the Decision Transformer model to a series

of robotics control problems. We find that Decision Trans-
formers are able to effectively clone expert policies in an of-
fline context. Furthermore, we demonstrate that our model
begins to learn successful behavioral when trained on trajec-
tories generated from a random policy. This model formu-
lation shows promise at being able to generalize to a vari-
ety of continuous control tasks, allowing environments with
continuous-valued action spaces to be represented without
needing discretization or hindsight. We identify two pri-
mary limitations of our approach and suggest future explo-
rations into alternative loss functions which are better able
to capture the desired properties in a trajectory sequence
representation learner.

Our code can be found at https://github.com/
Aidan-B1409/AI535_DecisionTransformer

References
[1] Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas

Schneider, Rachel Fong, Peter Welinder, Bob McGrew,
Josh Tobin, Pieter Abbeel, and Wojciech Zaremba. Hind-
sight experience replay. (arXiv:1707.01495), Feb 2018.
arXiv:1707.01495 [cs]. 2, 3, 6, 7

[2] Yevgen Chebotar, Karol Hausman, Yao Lu, Ted Xiao,
Dmitry Kalashnikov, Jake Varley, Alex Irpan, Benjamin Ey-
senbach, Ryan Julian, Chelsea Finn, and Sergey Levine.
Actionable models: Unsupervised offline reinforcement
learning of robotic skills. (arXiv:2104.07749), Jun 2021.
arXiv:2104.07749 [cs]. 3

[3] Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee,
Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind

7

https://github.com/Aidan-B1409/AI535_DecisionTransformer
https://github.com/Aidan-B1409/AI535_DecisionTransformer


Srinivas, and Igor Mordatch. Decision transformer: Rein-
forcement learning via sequence modeling, 2021. 1, 4, 6

[4] Benjamin Eysenbach, Tianjun Zhang, Sergey Levine, and
Ruslan Salakhutdinov. Contrastive learning as goal-
conditioned reinforcement learning. 3, 7

[5] Qingqing Huang, Aren Jansen, Joonseok Lee, Ravi Ganti,
Judith Yue Li, and Daniel P. W. Ellis. Mulan: A joint em-
bedding of music audio and natural language, 2022. 7

[6] Michael Janner, Qiyang Li, and Sergey Levine. Offline rein-
forcement learning as one big sequence modeling problem,
2021. 1, 3

[7] Wenzhe Li, Hao Luo, Zichuan Lin, Chongjie Zhang,
Zongqing Lu, and Deheng Ye. A survey on transformers
in reinforcement learning, 2023. 1, 3

[8] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel,
Nicolas Heess, Tom Erez, Yuval Tassa, David Silver, and
Daan Wierstra. Continuous control with deep reinforcement
learning. (arXiv:1509.02971), Jul 2019. arXiv:1509.02971
[cs, stat]. 2

[9] Yecheng Jason Ma, Jason Yan, Dinesh Jayaraman, and
Osbert Bastani. How far i’ll go: Offline goal-
conditioned reinforcement learning via f -advantage regres-
sion. (arXiv:2206.03023), Nov 2022. arXiv:2206.03023
[cs]. 2, 3, 4, 7

[10] Matthias Plappert, Marcin Andrychowicz, Alex Ray, Bob
McGrew, Bowen Baker, Glenn Powell, Jonas Schneider,
Josh Tobin, Maciek Chociej, Peter Welinder, Vikash Kumar,
and Wojciech Zaremba. Multi-goal reinforcement learning:
Challenging robotics environments and request for research.
(arXiv:1802.09464), Mar 2018. arXiv:1802.09464 [cs]. 2, 6

8


	. Introduction
	. Related Work
	. Methods
	. Results
	. Discussion
	. Limitations & Future Work

	. Conclusion

