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ABSTRACT
The rising amounts of food waste across the world is a severe
environmental, social, and economic catastrophe. The majority of
food waste occurs at the consumer level, yet we have no reliable
means to quantify this waste. A lack of publicly available image
datasets of commingled food waste has prohibited researchers from
leveraging advances in computer vision for the task of automatic
food waste measurement. We present an AI-assisted compost bin
that automatically measures kitchen compost waste by collecting
2D, 3D, and thermal images alongsidemeasurements of temperature,
humidity, pressure, and volatile organic compounds. The compost
bin utilizes speech recognition technology that allows users to
verbally describe the items they deposit. We provide a companion
mobile app that tasks a subset of volunteer users to draw boundaries
around individual discarded food items in order to generate high-
quality segmentation masks of food items present in the image.
We will deploy this device in a forthcoming field study to curate
a large and novel dataset of commingled food waste. This dataset
will enable computer vision researchers to train intelligent models
capable of quantifying and measuring food waste without the need
of costly, labor-intensive human subject studies. Additionally, we
train a preliminary food image segmentation model using existing
datasets of images of uneaten food items, and evaluate it on images
taken by our compost bin to demonstrate the critical need for a
large, high-quality dataset of commingled compost waste.

CCS CONCEPTS
• Computing methodologies → Image and video acquisition;
• Hardware → Sensors and actuators; • Applied computing →
Consumer products; Annotation.
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artificial intelligence, consumer compost, computer vision, food
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1 INTRODUCTION
Food waste is a dire crisis that threatens health security, envi-
ronmental sustainability, and economic stability across the world.
Around 1.3 billion tons of food is wasted globally each year, repre-
senting economic losses of over $1 trillion [12]. The problems of
food waste and food insecurity are intrinsically linked. Every year
783 million people battle hunger [13]. Yet, food waste squanders
production from around 30% of agricultural land [13]. Food imports
in high-income countries worsen food waste and loss which harms
the environment in exporting countries [15]. Our food system is
responsible for one-third of global greenhouse gas emissions [26],
of which wasted food accounts for 10% [13]. The majority of food
loss occurs at the retail and consumer level [12], and individual
households account for 61% of all food waste [14]. This amounts to
an annual loss of 81 kilograms per household [13]. Because there is
no established way to systematically and accurately measure food
waste, this gross inefficacy continues to worsen each year.

1.1 Motivation
Current approaches to measuring food waste are time-consuming,
burdensome, and prone to human error. These difficulties hinder
attempts to systemically measure consumer food waste. Human
subject studies carry a high labor and economic cost leading to a
severe lack of data. Furthermore, only 20% of the studies are based
on direct measurements of food waste [39]. Reported rates of food
waste are highly variable among studies [9] and are neither repli-
cable nor comparable [1]. A lack of data is the foremost barrier to
reducing food waste, and such data is largely absent at both na-
tional and international levels [3]. Moreover, the situation is likely
far worse than we estimate. Studies tend to overestimate rates of
consumption, and generally food loss waste is significantly under-
estimated [35]. One major reason why this data is not available is
because approaches to measuring waste are inconsistent and the
measurements themselves vary between studies [14].

1.2 Contributions
To close this gap, we propose an AI-assisted device that accurately
quantifies commingled food waste. We design a smart compost bin
to collect and measure food waste in home consumer kitchens. This
device records waste disposals to create an accurate and systematic
log of discarded waste. We design our approach with considera-
tion to current household compost products so that consumers
who already compost should not need to change their behavior.
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We present a food waste data labeling workflow with the goal of
limiting the annotation burden on the user. Our device supports
applications and visualization tools that will provide data-driven
and personalized interventions to empower individuals to reflect
upon and change their food waste habits.

2 MEASURING FOODWASTE
Presently, rates of food waste among various studies are highly
variable [9] and these studies disproportionately sample affluent re-
gions [39]. Although there have been attempts to analyze behavioral
attitudes towards food loss by demographics and socioeconomic
factors [27], there has been little attention to the demographic
breakdown of participants in waste measure studies apart from
high-level differences between country or household income [9].

It is critical that studies analyze the specific types of food wasted,
not just the total quantities, in order to develop strategies to encour-
age the reduction of food waste [37]. Furthermore, because food
waste decomposes, it is important to measure food waste at the
time of disposal, rather than analyses at later points in time [10].
To understand food loss, we desperately need more data produced
from direct and immediate measurements of food waste.

2.1 Measuring Commercial Food Waste
Given the economic incentive, restaurants and commercial kitchens
make substantial efforts to mitigate waste [22]. Researchers mea-
suring food waste in commercial kitchens have explored a number
of indirect and direct approaches. Supermarkets, restaurants, and
cafes maintain extensive records of their purchases and sales, and
together these records provide indirect estimates of food waste.
Staff in restaurants and cafeterias may use clear trash cans or manu-
ally dig through the trash. This view may provide staff an informal
understanding of which food items their customers are not eating
and inform them to adjust portion sizes or menu choices.

In research studies attempting to directlymeasure post-consumer
food waste, restaurants may sort trash and food waste into different
colored trash bins [8, 22] or task a human observer to monitor the
trash can and record all waste as it is disposed [8]. In other ap-
proaches, commercial kitchens have weighed kitchen scraps before
disposal [34], measured the waste each customer leaves on their
plate [36], and captured images of customer plate waste [6].

All of these systems are manual, based on sampling, and do not
solve the underlying data problem. Furthermore, these approaches
are reactive and tend to fail when the kitchen is busy. Most impor-
tantly, they do not create a mechanism for real-time intervention.

2.2 Measuring Consumer Food Waste
To attempt to track food waste at home, researchers have employed
a variety of strategies, including surveys [33], food journals [28],
and mobile apps [7]. Some of these methods, such as surveys, are in-
formal and ask people to estimate the amount of food waste in their
household. Other methods are more direct, tasking participants to
keep a record of the specific amounts and types of food waste in
a journal. Some of these studies provide scales and task users to
directly weigh their food waste. In efforts to increase reliability of
measurements, researchers may also collect refuse from homes to
manually sort, log, and weigh discarded food [31].

However, all of these methods are based on human action and
are costly, inaccurate, and time-consuming. A meta-analysis of 332
studies measuring foodwaste found that measurements were highly
variable among studies and across methods [9]. Fundamentally,
these measurement approaches do not provide a holistic view of
food waste [21] nor do they solve the underlying data problem.
Furthermore, these approaches fail to guide consumer behavior.

2.3 Use of Technology
Computer vision (CV) is a field within artificial intelligence (AI)
that designs algorithms to identify objects in images and videos,
with broad applications across engineering, medicine, and robotics.
Although researchers in CV have given some limited attention to de-
tection of food items, these tasks usually focus on detection of foods
in the production chain or at the plate level before consumption
[38]. Most food datasets contain images of food before consump-
tion [23, 25, 38]. However, partially eaten, rotten, or discarded food
looks fundamentally different than food before consumption [6].

Although computer vision systems have attempted to automati-
cally quantify nutritional information from images of meals served
at restaurants [23], the problem of identifying food waste from
image data has not been well studied [6]. Although a few private
companies have investigated food waste in commercial kitchens,
there have been no prior efforts to use technology to measure food
waste in consumer kitchens. And because public datasets of images
of food waste do not exist, machine learning researchers are limited
in their approaches to tackle this problem with computer vision.

In addition to the identification of food items, AI has been em-
ployed in other areas related to waste management (see review [11]).
For example, systems of sensors can be used to measure the fill
level of dumpsters in order to notify municipal waste management
companies when it is time to empty them [17]. Smart technologies
have been deployed to monitor and detect the concentration of odor
in wastewater systems [5] and to measure various bioprocesses
related to food waste (see review [32]). CV systems can be used
to automatically sort recyclables [19] and to quantify and predict
the amount of solid waste generated across different parts of a
municipal waste collection system [18]. Furthermore, the use of
digital technologies to improve efficiency in supply chains has been
shown to lead to measurable reductions in food waste [30].

3 SMART COMPOST BIN
To facilitate the development of a large, high-quality household
food waste dataset, we design a smart compost bin − an AI-assisted
data collection device designed for residential consumer use. This
device collects 2D, 3D, and thermal images, as well as environmental
data using sensors integrated throughout the compost bin. Study
participants annotate their disposals verbally, and we transcribe
this speech to provide annotations for a novel food waste dataset.

3.1 Design
To annotate a large amount of food waste, we will distribute our
compost bin to volunteer households. These participants will use
this bin in their day-to-day compost disposal. We design our bin
with convenience and similarity to existing compost solutions in
mind in order to reduce annotator fatigue [16] and encourage user
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adoption. With the goal of enabling a wide-scale data collection
study, we design for the following usability considerations:
Device Sanitation: The device should be easy to clean to prevent
the buildup of decaying organic material. We provide a remov-
able, dishwasher-safe internal polycarbonate bucket to house the
composted items which allows convenient dishwasher cleaning.
Device Operation: To streamline the operation of the device, we
integrate a spring-loaded hinge and an ergonomic latch which can
be actuated even when the users hands are occupied while cooking.
Odor Management: We implement a passive air filtration system
which uses carbon pellets to prevent the buildup of condensation
or foul odors in the device. The lid seals against the outer bucket
using a rubber gasket in order to prevent odor emission.
Ease of Use: We strive to make the data collection non-intrusive
and hands-free to reduce annotator fatigue. The user is prompted
to describe newly deposited items after an image is taken. A micro-
phone records this speech description, which we then automatically
transcribe to generate a food item label (see Section 3.2.2).

3.1.1 Components. The primary manufactured components of this
compost bin consist of the main body and a hinged lid (see Figure 1).
The main structure houses the chamber for disposed food items, as
well as the embedded processor and weight scale. The majority of
the device’s sensors (see Section 3.1.2) are housed in the lid, which
is connected to the main compartment by a spring-loaded hinge.

In the lid, a depth-imaging camera and thermal imaging sensor
are mounted facing into the bin, allowing images of the disposed
food waste to be captured when the lid is closed. The bucket interior
is lit using a set of diffusedWS2812B LEDs, to control lighting condi-
tions while imaging. These sensors are protected from condensation
using a polycarbonate protective layer for the depth camera, and
an IR-transmissive polymer covering the infrared thermal sensor.

To gain insights about the contents of the compost bin, we in-
tegrate sensors to measure weight and gas levels. A metal-oxide
gas sensor in the lid detects changes in volatile organic compound
concentration inside the bucket, as well as the ambient humidity
and temperature of the surroundings. The base of the device is de-
signed such that force is distributed through a single-point load cell,
allowing the calculation of the mass for each food item deposited.

The device is constructed primarily using 3D-printed compo-
nents, reducing total manufacturing cost for low-volume production
runs compared to traditional plastics manufacturing methods. We
use Polylactic Acid (PLA) and Polyethylene Terepthalate Glycol
(PETG) for our materials. Including the processor, sensors, and all
other hardware, each compost bin costs $468 to produce.

3.1.2 Sensors. Our device contains an array of sensors (see Table
1) to support the collection of multimodal data characterizing the
food waste. An Intel RealSense D401 stereoscopic camera is used for
capturing images, and we reconstruct a 3D point cloud using Intel
RealSense software1. This low-profile stereoscopic camera operates
at a minimum depth of 7cm, allowing it to be used effectively at the
ranges between the lid and base of the compost bin. This camera
system has a dedicated coprocessor for camera synchronization,
reducing the total overhead on our main processor.

1https://github.com/IntelRealSense/librealsense

Using this data, we intend to train a computer vision model for
instance segmentation on post-consumer food images (see 3.3). A
MLX90640 IR thermal imaging sensor is also integrated next to our
optical sensor, to record a heatmap within the compost bin. We
anticipate that recently disposed items may have a different tem-
perature than the surrounding compost items, which may enable
automatic image segmentation and classification in cases where
RGB color data is insufficient to differentiate compost items.

We incorporate a Bosch BME688 gas sensor to measure the total
volatile organic compound (VOC) concentration inside the bin,
as well as to measure ambient temperature and humidity. This
sensor measures changes in resistance across a metal oxide plate
in response to higher VOC concentrations. Using the Bosch BSEC
library2, we convert these resistance values into total VOC and
CO2 concentration measurements. A load cell in the bottom of the
device measures the total weight of the compost bin during every
detection, from which we derive the mass of each compost item.

These sensors are integrated into the compost bin lid using a
custom printed circuit board, enabling standardized and repeat-
able assembly. A 40-pin FPC data link connects the Raspberry Pi 5
microcontroller to the sensors in the lid.

3.2 Data Pipeline
We develop an integrated data pipeline to enable the autonomous
collection of data from a distributed network of smart compost bins
(see Figure 2). Our approach consists of on-device driver software,
a centralized database server for data aggregation, and a mobile
smartphone app to assist users operating the compost bin and
provide a robust workflow for segmentation annotation.

3.2.1 Device Firmware. Our Raspberry Pi 5 processor communi-
cates with the BME688 gas sensor, NAU7802 load cell amplifier,
MLX90640 thermal camera, and lighting devices over 𝐼2𝐶 , while
the D401 camera and audio subsystem are integrated over USB.
We design a multithreaded, event-based firmware architecture to
reduce the total runtime of our detection routine. This system asyn-
chronously processes speech transcription and file uploads in the
background to improve device responsiveness for the end user.

The compost bin detects when the user has closed the lid using
a magnetic hall effect sensor. After capturing images and reading
from each sensor, the device prompts the user to verbally describe
the disposed food waste. The user’s response is recorded, and this
speech audio is transcribed to provide a text annotation for the
captured image (see Section 3.2.2). The image files, topological map,
sensor data, and transcribed audio label are posted to a remote
database server using a secure encrypted network protocol.

3.2.2 Automatic Speech Recognition. Traditionally, annotating a
large image dataset requires a separate annotation study, leveraging
crowdsourced annotators to identify and label objects in each image.
To improve the efficiency of our data collection process, we collect
and annotate data simultaneously, leveraging the collaboration
of volunteer study participants. We automatically convert speech
audio provided by our users to a text label using Whisper [29], a
state-of-the-art automatic speech recognition (ASR) model.

2https://www.bosch-sensortec.com/software-tools/software/bme688-software/

https://github.com/IntelRealSense/librealsense
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Figure 1: Images of the Smart Compost Bin (left-to-right): lid closed, lid open, inside bin, rear, bottom.

Figure 2: System diagram detailing the data pipeline of our smart bin system.

Figure 3: Demonstration of the smart compost bin mobile app and annotation routine.
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Table 1: List of electronics and sensors included in the design.

Component Part Purpose

Processor Raspberry Pi 5 4GB Communicates with sensors; uploads to database.
Camera Intel RealSense D401 Takes 2D and 3D image.
Thermal camera 110°MLX90640 IR Matrix Generates thermal image and heatmap.
Gas sensor Bosch BME688 Measures temperature, humidity, tVOC, and pressure.
Hall Effect Melexis US5881LUA Detects when the lid is opened and closed.
Microphone and DAC Waveshare USB Sound Card Records speech audio, prompts user.
Load cell amplifier NAU7802 24-bit ADC Measures value from load cell.
Load cell 10kg Single-Point (C3 Grade) Measures mass of food items.

Whisper is a large transformer model containing over 74 million
parameters. Such a model is typically unsuitable for deployment
on a low-power ARM processor such as the Raspberry Pi 5 pow-
ering the smart compost bin. To improve transcription speed, we
use whisper.cpp3, a re-implementation of Whisper designed for
efficient CPU inference. Additionally, we apply 5-bit quantization
to this model to further accelerate ASR runtime performance.

3.2.3 Database Backend. Once the device completes a detection
routine, the sensor readings, topological map, images, speech audio,
and transcribed image label are uploaded to our database server.
We use FastAPI4 as our web server, routing inbound HTTP traffic
from client devices and handling form validation. Multimedia data
is saved to disk, while sensor readings and metadata are written to a
MongoDB non-relational database instance. Images are associated
with each database record using file paths, allowing efficient and
optimized record querying without compromising write operation
performance for record insertion operations.

3.2.4 Mobile app. To serve as the user interface to the smart com-
post bin, we developed a cross-platform mobile application (see
Figure 3). This app tracks usage and informs users about their com-
posting habits. When a new user opens the app for the first time, it
guides them through a one-time setup process, using a Bluetooth
pairing routine to connect the compost bin to the user’s Wi-Fi net-
work. Once connected, the app provides a data-driven dashboard
that tracks that user’s composting habits.

Each time the user opens the app, it downloads any recent images
of the user’s compost from our database server. For each new image,
the app tasks the user to draw an outline around each compost item
in the image using their touchscreen. We save this boundary anno-
tation alongside the transcribed categorical label to our database.
These boundaries will allow us to train a robust semi-supervised
segmentation model to automatically detect food waste. We will
deploy this app for our initial field study to construct a dataset
of labeled and manually segmented examples. This dataset will
support the training of our food waste recognition model, and fu-
ture versions of this application will perform food waste detection
automatically, without requiring user input (see Section 3.3).

Additionally, we provide an interactive analytics dashboard to in-
form users about their composting habits. This dashboard highlights
common behavioral trends, including graphs illustrating their most

3https://github.com/ggerganov/whisper.cpp
4https://fastapi.tiangolo.com/

frequently discarded food items. Our mobile app provides personal-
ized analytics to the user to encourage informed decision-making
that leads to reductions in their food waste footprint.

This app enables crowd-sourcing the laborious task of creating
segmentation masks to label individual items present in commin-
gled food waste images. We do not require our users to exhaustively
annotate every item, instead relying on a limited number of fully
annotated samples and a vast quantity of labeled but not segmented
images collected from the compost bin, which will facilitate the
training of a semi-supervised image segmentation model. By allow-
ing users to freely engage with the compost bin without restricting
use to specific items, we curate a large dataset representative of the
types of food waste which users most frequently compost.

3.3 Image Segmentation
Our long-term goal is to provide a system that automatically quan-
tifies food waste without relying on user annotation. Towards this
objective, we produce a preliminary food item segmentation model.
There are no available datasets of food waste images, and existing
datasets only contain images of plated, pre-consumer food. Further-
more, modern computer vision models often require training very
large datasets beyond the scale of current food image datasets and
of our data collection study. To address these challenges, we first
train an initial model for pre-consumer food recognition and apply
it towards compost segmentation.

We select YOLOv8-seg5, a popular object recognition model
which achieves state-of-the-art accuracy and inference speed on
many computer vision tasks [24]. YOLOv8-seg consists of three
components: a CSPDarknet536 backbone for feature extraction, a
convolutional network for object detection, and a series of fully
connected layers for generating segmentation proposals from latent
features. The model uses non-maximal suppression to select only
the most probable detection for the segmentation mask prediction.
A standard joint loss function is used, with a binary cross-entropy
term for segmentation mask loss, a classification loss term, and a
distributed focal loss term for bounding box accuracy. YOLOv8-seg
is pretrained on the COCO dataset [20], a ubiquitous computer vision
dataset containing over 200,000 labeled images. However, COCO only
consists of 91 class labels, of which, only 10 are food items, which
limits the food categories this pretrained model can detect.

5https://docs.ultralytics.com/tasks/segment/
6https://huggingface.co/docs/timm/en/models/csp-darknet

https://github.com/ggerganov/whisper.cpp
https://fastapi.tiangolo.com/
https://docs.ultralytics.com/tasks/segment/
https://huggingface.co/docs/timm/en/models/csp-darknet
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Table 2: List of datasets segmenting images of food.

Dataset Source Year 𝑛 images 𝑛 labels 𝑛 items

COCO [20] 2017 328,000 91 2.5M
FoodSeg 103 [23] 2021 7,118 104 42,097
UECFoodPix [25] 2020 10,000 103 36,929
Food201 [38] 2017 12,093 208 55,412

In the absence of large, annotated image datasets of food compost,
we fine-tune our model on three pre-consumer food image datasets.
We select FoodSeg103 [38], Food201 [23], and UECFoodPix [25],
each of which contain segmentationmask annotations for images of
food objects andmeals (see Table 2). After combining similar classes,
we find 322 unique food categories in our merged training dataset,
with 29,211 images and 135,129 annotations. For each dataset, we
randomly sample 80% of images for training, 10% for validation, and
10% for testing. We concatenate each split with the corresponding
splits from the other datasets to form our merged fine-tuning set.
After the model has been fine-tuned, we perform subset validation
at each epoch, utilizing early stopping to select the checkpoint with
the best performance while avoiding overfitting.

(a) Labels

(b) Predictions

Figure 4: Examples of detections on food image test subset.

Figure 5: Precision-recall curve of Unified YOLOv8l-seg with
an average 0.297 mAP@50 across the 322 food items.

We find that our fine-tuned YOLOv8-seg model demonstrates
modest performance on food instance segmentation, achieving a
mean average precision of 0.233 (see Table 3). Figure 5 shows the
precision-recall curve for each of our 322 food classes. A subset
of classes disproportionately affect model performance, which we
assess to be the result of a class imbalance in our merged dataset.
UECFoodPix and FoodSeg103 contain classes for food dishes (e.g.,

Table 3: YOLOv8 performance on food instance segmentation.

Dataset Precision Recall mAP50 mAP50-95

Food201 0.317 0.173 0.152 0.103
FoodSeg103 0.432 0.334 0.315 0.253
UECFoodPix 0.700 0.481 0.505 0.430
Unified 0.518 0.284 0.297 0.233

vegetable tempura 𝑛=12, eels-on-rice 𝑛=7), while Food201 is labeled
with discrete food items. These food dish classes are underrepre-
sented in our dataset. When evaluated on individual food datasets,
we find that our model attains better performance on datasets with
fewer classes such as UECFoodPix and FoodSeg103, and struggles
with the granular and highly multilabel Food201 dataset. Despite
these differences between datasets, YOLOv8-seg is still able to seg-
ment food items in a commingled image, such as a plate of food, as
demonstrated in Figure 4.

We assess model performance on compost instance segmentation
for food waste measurement. We manually label a small sample
of 41 images with 97 food items taken during device development.
Using our fine-tuned YOLOv8-seg model, we predict segmentation
masks for each image (examples in Figure 6). Ourmodel identifies 30
food items in total, of which four match ground truth annotations,
achieving only an accuracy of 4% on our downstream task.

Figure 6: Examples of detections on compost bin images.

In many cases, our model fails to predict any of the food items in
the image. We hypothesize this performance degradation reflects
the fact that food compost instances are far out-of-distribution
relative to images of uneaten food. Segmentation models use spa-
tial features to detect the presence of an object in an image, and
food compost innately has vastly different spatial properties than
uneaten food. Using existing food segmentation datasets, we are
unable to develop a model to automatically identify food waste
items. However, this preliminary model provides a framework for
the implementation of food instance segmentation models. These
experiments underscore the need for a high-quality, large image
dataset of annotated post-consumer food images to enable the devel-
opment of a robust computer vision model for food waste detection.

4 USER STUDY
We will perform a pilot study to rigorously test our device, collect
measurements, and assess the potential to scale this approach. We
will deploy this study in consumer homes, manufacturing a device
for 𝑛=50 participants for use over a one month period.

While many food waste studies seek a representative sample
of participants to develop an understanding of food waste habits
[39], we instead aim to produce a dataset of annotated images of
food waste items with associated sensor readings. This pilot study
informs us of the viability of the smart compost bin as a method for
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food waste monitoring and understanding, and informs us which
types of data and features are relevant for the task of automatic
food waste recognition. With these considerations in mind, we seek
a convenience population, enrolling 50 volunteer households which
already participate in existing municipal composting programs. In
this study, we will ask each user to engage in their usual food waste
composting habits and to annotate the resulting images.

First, when the user discards food items in the bin, the device
will prompt them to verbally describe the items they just added (e.g.,
"two banana peels", "three eggshells"). We collect open-vocabulary
annotations which allow users to describe their food waste natu-
rally rather than instructing them to match a specific category. In
contrast to traditional food waste journal approaches, this allows
users to quickly engage with the device’s annotation routine with
little disruption to their standard composting habits, which we
expect to encourage user adoption of our device. We will use an
automatic speech processing model to transcribe this speech anno-
tation into a text label for the image. From this, we will leverage
unsupervised natural language processing techniques to cluster the
unstructured labels into a specific food waste category.

Second, we task the user to annotate the images of food waste
using our companion mobile app. After a user discards an item,
the image captured by the compost bin is displayed in the app,
alongside the transcription of the description the user provided.

The user is instructed to draw an outline around each recently
deposited food item. This boundary is converted to a segmentation
mask and stored in our database. These segmentation masks will
be used to train computer vision models to automatically identify
and quantify food waste from image data. In future deployments
of our compost bin, this boundary annotation workflow will not
be required, and our application will simply provide users with
analytics about their composting history and food waste habits.

For each food item disposed, we collect a precise weight mea-
surement of the item. Although the item will rest on top of other
compost, we use the difference between the previous measurement
to calculate the specific weight of newly added items. As the bin
fills with compost, participants may empty their indoor compost
bin to their larger outside compost bin. Because we measure and
log the total weight of waste in the bin every time the lid opens
and closes, we easily detect and account for this event.

Because we model our kitchen compost bucket after those dis-
tributed by local waste utilities, we will measure all food intended
for composting. In our community, customers may compost almost
all food waste. This includes edible waste, such as meat, seafood,
fruit, vegetables, dairy, baked goods, plate scrapings, and inedible
waste, such as fruit and vegetable peels, coffee grinds, tea bags, egg
shells, and bones. Our local composting program does not accept
seafood shells nor oils and grease, and these inedible items will not
be included in our measurement study. Yard waste is collected in
an outside bin and does not factor into our study.

To understand the users participating in our study, wewill survey
each user before the start of the study. We will collect demographic
information such as household size, ages, household income, self-
described gender, and ethnicity. Additionally, we will survey users
to document their purchase and dining habits, as well as their
opinions, attitudes, and practices towards food waste.

5 DISCUSSION
Fundamentally, if we hope to reduce household food waste, wemust
find ways to induce behavioral changes in consumers [4]. These
strategies include encouraging better meal planning, motivating
more sustainable shopping routines, encouraging the purchase of
less visually appealing produce, more efficient cooking and food
storage routines, and better utilization of meal leftovers [2]. How-
ever, because we lack the means to accurately measure consumer
food waste, we cannot implement tools that provide personalized
analytics to encourage individuals to change their behaviors.

Currently there are no large-scale public datasets on residential
commingled food refuse. The absence of such a dataset hinders the
application of computer vision methods to the task of food waste
recognition. To address this need, we present a smart compost bin
that automatically weighs and images discarded food items. We
provide a mobile application to enable crowd-sourced labeling of
consumer compost waste. Following our forthcoming data collec-
tion study, we will collect these annotated images, alongside sensor
readings, to publish a novel dataset of commingled food waste.

The automatic identification of food waste using artificial in-
telligence presents a number of unique challenges [23], such as
ascertaining the quantity of discarded items, segmenting food item
instances commingled in the refuse bin, differentiating between
related forms of certain foods (e.g., apple slice vs. apple core), and
recognizing a diverse set of class labels. Given these many chal-
lenges, it remains unclear which features will be most effective for
classifying food waste. Our system senses various descriptors of
the visual, physical, and chemical properties of a user’s compost.
From this highly multimodal data, we will be able to investigate
which features are most descriptive for the task of food waste clas-
sification. This analysis will help inform the development of future
cost-effective smart home devices for food waste monitoring.

Current state-of-the-art CV models require very large datasets
to train accurate image segmentation models. We demonstrate the
ability of a general object segmentation model, pretrained on both
food and non-food items, to be adapted to the task of food item
segmentation. In future work, we will utilize transfer learning using
our novel food waste image dataset to fine-tune an instance seg-
mentation model to the task of automatic food waste measurement.
Such a model could be applicable across the entire food distribution
network, including in the agriculture sector, at grocery stores and
commercial kitchens, and in municipal waste processing programs.

Our goal is to create a large, high-quality dataset of images and
sensor readings to be used to train computer vision models that
automatically quantify consumer food waste. By designing a system
to facilitate the collection of food waste data, we hope to provide
the foundation for future technologies that result in meaningful,
data-driven analytics, inspiring changes in consumer habits and
attitudes towards food waste reduction.

ACKNOWLEDGMENTS
This research was supported by the Foundation for Food & Agri-
culture and the Kroger Zero Waste Foundation.

The authors express gratitude toWeston Bosworth and Kevin Ng
for their engineering and design support. Additionally, we thank
Daniel Lau, Kimberly Markley, Blake Pugh, and Micah Stalberg for
the development of the mobile application referenced in this work.



CoFI ’24, Nov 04–08, 2024, San Jose, Costa Rica Beery et al.

REFERENCES
[1] Vera Amicarelli and Christian Bux. 2021. Food waste measurement toward a fair,

healthy and environmental-friendly food system: a critical review. British Food
Journal 123, 8 (2021), 2907–2935. https://doi.org/10.1108/BFJ-07-2020-0658

[2] Jayanath Ananda, Gamithri Gayana Karunasena, and David Pearson. 2022. Iden-
tifying interventions to reduce household food waste based on food categories.
Food Policy 111 (2022), 102324. https://doi.org/10.1016/j.foodpol.2022.102324

[3] Emiliano Lopez Barrera and Thomas Hertel. 2021. Global food waste across the
income spectrum: Implications for food prices, production and resource use. Food
Policy 98 (2021), 101874. https://doi.org/10.1016/j.foodpol.2020.101874

[4] Mark Boulet, Annika Stott, and Sarah Kneebone. 2023. Which behaviours matter?
Prioritising food waste reduction behaviours for targeted policy and program
approaches. Journal of Environmental Management 345 (2023), 118668. https:
//doi.org/10.1016/j.jenvman.2023.118668

[5] Javier Burgués, María Deseada Esclapez, Silvia Doñate, and Santiago Marco. 2021.
RHINOS: A lightweight portable electronic nose for real-time odor quantification
in wastewater treatment plants. IScience 24, 12 (2021). https://doi.org/10.1016/j.
isci.2021.103371

[6] Gianluigi Ciocca, Paolo Napoletano, and Raimondo Schettini. 2015. Food Recog-
nition and Leftover Estimation for Daily Diet Monitoring. In New Trends in Image
Analysis and Processing – ICIAP 2015 Workshops, Vittorio Murino, Enrico Puppo,
Diego Sona, Marco Cristani, and Carlo Sansone (Eds.). Springer International
Publishing, Cham, Switzerland, 334–341. https://doi.org/10.1007/978-3-319-
23222-5_41

[7] Kaitlin Danible, Chloe Panizza, Carol Boushey, Deborah Kerr, Fengqing Zhu, and
Jinan C Banna. 2021. A Novel to Method to Measure Food Waste: The Mobile
Food Record. The Journal of Extension 59, 3 (2021), 1. https://doi.org/10.34068/
joe.59.03.01

[8] Belén Derqui, Vicenç Fernandez, and Teresa Fayos. 2018. Towards more sustain-
able food systems. Addressing food waste at school canteens. Appetite 129 (2018),
1–11. https://doi.org/10.1016/j.appet.2018.06.022 Publisher: Elsevier.

[9] Zhengxia Dou and John D. Toth. 2021. Global primary data on consumer food
waste: Rate and characteristics – A review. Resources, Conservation and Recycling
168 (2021), 105332. https://doi.org/10.1016/j.resconrec.2020.105332

[10] Maklawe Essonanawe Edjabou, Alessio Boldrin, and Thomas Fruergaard Astrup.
2018. Compositional analysis of seasonal variation in Danish residual household
waste. Resources, Conservation and Recycling 130 (2018), 70–79.

[11] Bingbing Fang, Jiacheng Yu, Zhonghao Chen, Ahmed I. Osman, Mohamed
Farghali, Ikko Ihara, Essam H. Hamza, David W. Rooney, and Pow-Seng Yap.
2023. Artificial intelligence for waste management in smart cities: A re-
view. Environmental Chemistry Letters 21, 4 (may 2023), 1959–1989. https:
//doi.org/10.1007/s10311-023-01604-3

[12] Food and Agriculture Organization (FAO). 2013. Food wastage footprint: Impacts
on natural resources. Summary Report (2013), 1–63.

[13] Hamish Forbes, Eloise Peacock, Nettie Abbot, and Michael Jones. 2024. Think Eat
Save: Tracking Progress to Halve Global Food Waste. Food Waste Index Report
(2024). https://wedocs.unep.org/20.500.11822/45230

[14] Hamish Forbes, Tom Quested, and Clemintine O’Connor. 2021. Food Waste Index
Report. United Nations Environment Programme (2021).

[15] Alessandro Gatto and Maksym Chepeliev. 2024. Global food loss and waste
estimates show increasing nutritional and environmental pressures. Nature Food
(2024), 1–12. https://doi.org/10.1038/s43016-023-00915-6

[16] Christoph Kern, Stephanie Eckman, Jacob Beck, Rob Chew, Bolei Ma, and Frauke
Kreuter. 2023. Annotation sensitivity: Training data collection methods affect
model performance. arXiv preprint arXiv:2311.14212 (2023). https://doi.org/10.
48550/arXiv.2311.14212

[17] Arafat Ali Khan, Arif Akram Sajib, Farhana Shetu, Saimum Bari, Md Saniat Rah-
man Zishan, and Kawshik Shikder. 2021. Smart waste management system for
Bangladesh. In 2021 2nd International Conference on Robotics, Electrical and Sig-
nal Processing Techniques (ICREST). IEEE, IEEE, Dhaka, Bangladesh, 659–663.
https://doi.org/10.1109/ICREST51555.2021.9331159

[18] KA Kolekar, T Hazra, and SN Chakrabarty. 2016. A review on prediction of
municipal solid waste generation models. Procedia Environmental Sciences 35
(2016), 238–244. https://doi.org/10.1016/j.proenv.2016.07.087

[19] Maria Koskinopoulou, Fredy Raptopoulos, George Papadopoulos, Nikitas
Mavrakis, and Michail Maniadakis. 2021. Robotic waste sorting technology:
Toward a vision-based categorization system for the industrial robotic separation
of recyclable waste. IEEE Robotics & Automation Magazine 28, 2 (2021), 50–60.
https://doi.org/10.1109/MRA.2021.3066040

[20] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva
Ramanan, Piotr Dollár, and C Lawrence Zitnick. 2014. Microsoft COCO: Common
objects in context. In Computer Vision–ECCV 2014: 13th European Conference,
Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V 13. Springer, 740–755.
https://doi.org/10.1007/978-3-319-10602-1_48

[21] Carlos Martin-Rios, Anastasia Hofmann, and Naomi Mackenzie. 2021.
Sustainability-oriented innovations in food waste management technology. Sus-
tainability 13, 1 (2021), 210. https://doi.org/10.3390/su13010210 Publisher:

Multidisciplinary Digital Publishing Institute.
[22] Bruce McAdams, Mike von Massow, Monica Gallant, and Mychal-Ann Hayhoe.

2019. A cross industry evaluation of food waste in restaurants. Journal of
Foodservice Business Research 22, 5 (2019), 449–466. https://doi.org/10.1080/
15378020.2019.1637220 Publisher: Taylor & Francis.

[23] Austin Meyers, Nick Johnston, Vivek Rathod, Anoop Korattikara, Alex Gorban,
Nathan Silberman, Sergio Guadarrama, George Papandreou, Jonathan Huang,
and Kevin P Murphy. 2015. Im2Calories: towards an automated mobile vision
food diary. In Proceedings of the IEEE international conference on computer vision.
1233–1241.

[24] Haijiao Nie, Huanli Pang, Mingyang Ma, and Ruikai Zheng. 2024. A Lightweight
Remote Sensing Small Target Image Detection Algorithm Based on Improved
YOLOv8. Sensors 24, 9 (2024), 2952. https://doi.org/10.3390/s24092952

[25] Kaimu Okamoto and Keiji Yanai. 2021. UEC-FoodPIX Complete: A large-scale
food image segmentation dataset. In Pattern Recognition. ICPR International Work-
shops and Challenges: Virtual Event, January 10–15, 2021, Proceedings, Part V.
Springer, 647–659. https://doi.org/10.1007/978-3-030-68821-9_51

[26] Joseph Poore and Thomas Nemecek. 2018. Reducing food’s environmental
impacts through producers and consumers. Science 360, 6392 (2018), 987–992.
https://doi.org/10.1126/science.aaq0216

[27] Ludovica Principato, Giovanni Mattia, Alessio Di Leo, and Carlo Alberto Pratesi.
2021. The household wasteful behaviour framework: A systematic review of
consumer food waste. Industrial Marketing Management 93 (2021), 641–649.
https://doi.org/10.1016/j.indmarman.2020.07.010

[28] Tom E Quested, Griff Palmer, Laura C Moreno, Christa McDermott, and Kelsea
Schumacher. 2020. Comparing diaries and waste compositional analysis for
measuring food waste in the home. Journal of Cleaner Production 262 (2020),
121263. https://doi.org/10.1016/j.jclepro.2020.121263 Publisher: Elsevier.

[29] Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, and
Ilya Sutskever. 2023. Robust speech recognition via large-scale weak supervision.
In International Conference on Machine Learning (Proceedings of Machine Learning
Research, Vol. 202), Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara
Engelhardt, Sivan Sabato, and Jonathan Scarlett (Eds.). PMLR, 28492–28518.

[30] Ramakrishnan Ramanathan, Yanqing Duan, Tahmina Ajmal, Katarzyna Pelc,
James Gillespie, Sahar Ahmadzadeh, Joan Condell, Imke Hermens, and Usha
Ramanathan. 2023. Motivations and challenges for food companies in using IoT
sensors for reducing food waste: Some insights and a road map for the future.
Sustainability 15, 2 (2023), 1665. https://doi.org/10.3390/su15021665

[31] Brian E Roe, Danyi Qi, Robbie A Beyl, Karissa E Neubig, Corby K Martin, and
John W Apolzan. 2020. The validity, time burden, and user satisfaction of the
FoodImageTM smartphone app for food waste measurement versus diaries: a
randomized crossover trial. Resources, Conservation and Recycling 160 (2020),
104858. https://doi.org/10.1016/j.resconrec.2020.104858

[32] Zafar Said, Prabhakar Sharma, Quach Thi Bich Nhuong, Bhaskor J Bora, Eric
Lichtfouse, Haris M Khalid, Rafael Luque, Xuan Phuong Nguyen, and Anh Tuan
Hoang. 2023. Intelligent approaches for sustainable management and valorisation
of food waste. Bioresource Technology 377 (2023), 128952. https://doi.org/10.
1016/j.biortech.2023.128952

[33] Yiheng Shu, Brian E Roe, and Kathryn Bender. 2021. Adapting, refining and
expanding a validated questionnaire to measure food waste in US households.
MethodsX 8 (2021), 101377. https://doi.org/10.1016/j.mex.2021.101377

[34] Kirsi Silvennoinen, Sampsa Nisonen, and Oona Pietiläinen. 2019. Food waste case
study and monitoring developing in Finnish food services. Waste Management 97
(2019), 97–104. https://doi.org/10.1016/j.wasman.2019.07.028 Publisher: Elsevier.

[35] Monika van Den Bos Verma, Linda de Vreede, Thom Achterbosch, and Martine M
Rutten. 2020. Consumers discard a lot more food than widely believed: Estimates
of global food waste using an energy gap approach and affluence elasticity of
food waste. PloS one 15, 2 (2020). https://doi.org/10.1371/journal.pone.0228369

[36] Mike von Massow and Bruce McAdams. 2015. Table scraps: An evaluation of
plate waste in restaurants. Journal of foodservice business research 18, 5 (2015),
437–453. https://doi.org/10.1080/15378020.2015.1093451 Publisher: Taylor &
Francis.

[37] Sohani Vihanga Withanage, Goretty Maria Dias, and Komal Habib. 2021. Review
of household food waste quantification methods: Focus on composition analysis.
Journal of Cleaner Production 279 (2021), 123722. https://doi.org/10.1016/j.jclepro.
2020.123722

[38] Xiongwei Wu, Xin Fu, Ying Liu, Ee-Peng Lim, Steven CH Hoi, and Qianru Sun.
2021. A large-scale benchmark for food image segmentation. In Proceedings of
the 29th ACM international conference on multimedia. 506–515. https://doi.org/
10.1145/3474085.3475201

[39] Li Xue, Gang Liu, Julian Parfitt, Xiaojie Liu, Erica Van Herpen, Åsa Stenmarck,
Clementine O’Connor, Karin Östergren, and Shengkui Cheng. 2017. Missing
Food, Missing Data? A Critical Review of Global Food Losses and Food Waste
Data. Environmental Science & Technology 51, 12 (June 2017), 6618–6633. https:
//doi.org/10.1021/acs.est.7b00401 Publisher: American Chemical Society.

Received 3 June 2024

https://doi.org/10.1108/BFJ-07-2020-0658
https://doi.org/10.1016/j.foodpol.2022.102324
https://doi.org/10.1016/j.foodpol.2020.101874
https://doi.org/10.1016/j.jenvman.2023.118668
https://doi.org/10.1016/j.jenvman.2023.118668
https://doi.org/10.1016/j.isci.2021.103371
https://doi.org/10.1016/j.isci.2021.103371
https://doi.org/10.1007/978-3-319-23222-5_41
https://doi.org/10.1007/978-3-319-23222-5_41
https://doi.org/10.34068/joe.59.03.01
https://doi.org/10.34068/joe.59.03.01
https://doi.org/10.1016/j.appet.2018.06.022
https://doi.org/10.1016/j.resconrec.2020.105332
https://doi.org/10.1007/s10311-023-01604-3
https://doi.org/10.1007/s10311-023-01604-3
https://wedocs.unep.org/20.500.11822/45230
https://doi.org/10.1038/s43016-023-00915-6
https://doi.org/10.48550/arXiv.2311.14212
https://doi.org/10.48550/arXiv.2311.14212
https://doi.org/10.1109/ICREST51555.2021.9331159
https://doi.org/10.1016/j.proenv.2016.07.087
https://doi.org/10.1109/MRA.2021.3066040
https://doi.org/10.1007/978-3-319-10602-1_48
https://doi.org/10.3390/su13010210
https://doi.org/10.1080/15378020.2019.1637220
https://doi.org/10.1080/15378020.2019.1637220
https://doi.org/10.3390/s24092952
https://doi.org/10.1007/978-3-030-68821-9_51
https://doi.org/10.1126/science.aaq0216
https://doi.org/10.1016/j.indmarman.2020.07.010
https://doi.org/10.1016/j.jclepro.2020.121263
https://doi.org/10.3390/su15021665
https://doi.org/10.1016/j.resconrec.2020.104858
https://doi.org/10.1016/j.biortech.2023.128952
https://doi.org/10.1016/j.biortech.2023.128952
https://doi.org/10.1016/j.mex.2021.101377
https://doi.org/10.1016/j.wasman.2019.07.028
https://doi.org/10.1371/journal.pone.0228369
https://doi.org/10.1080/15378020.2015.1093451
https://doi.org/10.1016/j.jclepro.2020.123722
https://doi.org/10.1016/j.jclepro.2020.123722
https://doi.org/10.1145/3474085.3475201
https://doi.org/10.1145/3474085.3475201
https://doi.org/10.1021/acs.est.7b00401
https://doi.org/10.1021/acs.est.7b00401

	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Contributions

	2 Measuring Food Waste
	2.1 Measuring Commercial Food Waste
	2.2 Measuring Consumer Food Waste
	2.3 Use of Technology

	3 Smart Compost Bin
	3.1 Design
	3.2 Data Pipeline
	3.3 Image Segmentation

	4 User Study
	5 Discussion
	Acknowledgments
	References

